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Abstract. The structural properties and the band structures of the charge-transfer insulating oxides
SrO, MgO and SrTiO3 are computed both within density functional theory in the local density
approximation (LDA) and in Hedin’s GW -scheme for self-energy corrections, by using a model
dielectric function, which approximately includes local field and dynamical effects. The deep
valence states are shifted by the GW -method to higher binding energies, in very good agreement
with photoemission spectra. Since in all of these oxides the direct gaps at high-symmetry points
of the Brillouin zone may be very sensitive to the actual value of the lattice parameter a already at
the LDA level, self-energy corrections are computed both at the theoretical and the experimental a.
For MgO and SrO, the values of the energies of transition between the valence and the conduction
bands are improved by GW -corrections, while for SrTiO3 they are overestimated. The results are
discussed in relation to the importance of local field effects and to the nature of the electronic states
in these insulating oxides.

1. Introduction

In addition to forming the major constituent of the outer crust of the earth, oxides are
of considerable interest for their wide applications in various technological fields such as
electrochemistry, catalysis and microelectronics [1]. They present very diverse electronic
ground states which range from superconducting, metallic and semiconducting (intrinsic,
charge-density-like or spin-density-like) to insulating. From a theoretical point of view, a
proper description of their electronic properties is still an area of active research. On the
one hand, several transition metal oxides require the inclusion of many-body effects beyond
the available effective one-electron approaches, such as the density functional theory (DFT)
or the ab initio Hartree–Fock (HF) method. On the other hand, even for insulating charge-
transfer oxides, such as MgO and SrO, whose electronic ground states are well accounted for
in a one-electron picture, the calculation of quasiparticle (QP) energies within the DFT or the
HF method gives rather poor results. Indeed, one has to face the so-called energy band-gap
problem [2]. Indeed, when using the Kohn–Sham eigenvalues of the highest occupied and
the lowest empty states, the resulting gap usually underestimates the experimental data. On
the other hand, the corresponding difference between the HF eigenvalues overestimates the
gap severely. Alternative ways to calculate the band gap in infinite systems have been found,
in the framework of HF or DFT. One of them is based on total-energy differences between
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ground and charge-transfer states [3]. The other one relies on the value of the gap found in the
one-electron spectrum of the ionized or hole-doped system [4]. However, such methods are
unable to provide the full QP spectrum.

In the last decade, due to the implementation of angle-resolved photoemission experiments
able to cope with charging effects on insulating oxides, detailed QP spectra of MgO [5],
SrTiO3 [6] and TiO2 [7, 8], among other oxides, have become available. The experimental
achievements demand systematic improvements in the theoretical description of the electronic
excitations of simple oxides.

In semiconducting and ionic crystalline compounds, corrections to the DFT eigenvalues,
as obtained from the Kohn–Sham equations, may be estimated by first-order many-body
perturbation theory [9–11], with respect to the difference between the exchange–correlation
(XC) self-energy and the corresponding XC potential of the DFT, for which various
approximations are available. Within the same approach, the self-energy operator is treated in
the GW -approximation proposed by Hedin [9]. Such calculations have been carried out with
success for several semiconducting and insulating crystals [10–15], permitting the prediction
of the quasiparticle energies and the calculation of optical properties of real solids.

One of the crucial points in such calculations is the evaluation of the self-energy operator,
which is numerically very expensive, because of the requirement of knowledge of the full
inverse dielectric matrix of the system under study. This is a bottleneck in the application of
the method to systems with large number of atoms in the unit cell, such as surfaces [16, 17]
and defect-containing or low-symmetry solids. In order to reduce the substantial numerical
burden and to be able to predict electronic excited states for a wider range of real systems,
one may use efficientGW -methods, in which a model dielectric function is used to mimic the
screening properties of the system under study.

Pioneering work in this direction has been performed by Bechstedt and Del Sole in a
tight-binding scheme [18] and by Gygi and Baldereschi [19] within the DFT in the local
density approximation (LDA) for the exchange and correlation energy. The key to their
work relies (i) on the use of a model dielectric function, which mimics the main screening
properties of semiconductors, and (ii) on an approximated self-energy operator in which both
local fields and dynamical screening—giving rise to opposite contributions to band gaps—are
neglected [10, 18, 19]. For a large family of semiconductors, the band gaps obtained through
these simplified methods show good accordance with both experiments and full GW -results,
in which the screening properties of the system are calculated from first principles. More
recently, an efficient GW -method that approximately includes dynamical screening and local
field effects, without increasing the computational effort required, has been formulated [20] and
proved to reproduce quasiparticle energies and band gaps for bulk zinc-blende solids (ranging
from Si, GaAs and AlAs to the more ionic ZnSe) [21] and non-cubic systems (BN [22], SiC
polytypes [23,24]) satisfactorily. The method is based on a linear expansion of the dynamical
contribution to the exchange–correlation self-energy, on the use of a model dielectric function
and on a local ansatz for the treatment of the intrinsically non-local screened interaction.
Depending on the system, the calculation may be speeded up by two orders of magnitude with
respect to the corresponding full GW -calculations. Moreover, this kind of GW -calculation is
feasible on a standard workstation.

The aim of the present paper is to study the ground-state properties of cubic magnesium
oxide, strontium oxide and strontium titanate, in the DFT-LDA scheme, as well as their
quasiparticle band structures within the efficient GW -scheme. On one hand, no previous
GW -calculation of SrO or SrTiO3 exists, to our knowledge. On the other hand, these charge-
transfer oxides are characterized by different fundamental gaps, ranging from �3 eV (SrTiO3)
to �7.7 eV (MgO), as given by experimental data. Their band structures may substantially
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differ from those of the semiconductors cited above, due to the presence of strongly localized
electronic states. Thus, such a study may also represent a test for the approximate GW -
scheme, originally proposed for small-gap semiconductors, as regards its capabilities for a
different class of physical system.

The paper is organized as follows. The theoretical framework is described in section 2
and this is followed, in section 3, by a description of the computational ingredients used for
the description of structural and electronic properties of MgO, SrO and SrTiO3. The results
obtained for these systems are presented separately in sections 4, 5 and 6, respectively. Finally,
in section 7 we present our conclusions and the perspectives opened up by our work.

2. GW -corrections

The energy En�k of a quasiparticle in a band n at a given �k-point in the Brillouin zone can be
obtained through the equation [10, 11, 25][
−∇2

2
+ Vext(�r) + VH(�r)

]
φn�k(�r) +

∫
d3�r ′ �(�r, �r ′;En�k)φn�k(�r ′) = En�kφn�k(�r) (1)

which is written in atomic units (e = h̄ = me = 1). Vext(�r) is the external potential originating
from the ions, VH(�r) is the Hartree potential and � is the mass operator, usually called the
self-energy operator, which is in general non-local, non-Hermitian and energy dependent. In
principle it contains the exchange and correlation effects and is state (n�k) dependent. One can
compare the above equation to that of Kohn and Sham [26]:[

−∇2

2
+ Vext(�r) + VH(�r) + Vxc(�r)

]
ψn�k(�r) = E

(0)
n�k ψn�k(�r) (2)

where Vxc is the exchange–correlation potential of the DFT (for which several approximation
are available), and the superscript (0) will denote the quantities computed at the DFT level
from now on. E(0)

n�k is usually considered as a first approximation to the quasiparticle energy.
The failure of this scheme for evaluating energies of transition En′ �k − En�k between different
quasiparticle states in solids has been evidenced by many authors [2, 10, 11].

One can correct the DFT eigenvalues E(0)
n�k in a first-order perturbation theory with respect

to �n�k − Vxc, and estimate the QP energies as

En�k � E
(0)
n�k + 〈ψn�k|�(�r, �r ′;En�k)− Vxc(�r)|ψn�k〉. (3)

The evaluation of �(r, r ′;En�k) is in general a very difficult task. A possible approach is to
use the GW -approximation [9] in which a perturbation expansion for the self-energy can be
constructed and stopped at the first order:

�(�r, �r ′;ω) = i
∫ +∞

−∞

dω′

2π
e+iδω′

G(�r, �r ′;ω + ω′)W(�r, �r ′;ω′) (4)

whereG is the one-particle Green function,W is the screened Coulomb interaction and δ = 0+.
Following Bechstedt and co-workers [2,20], the real part of the self-energy operator (which is
relevant for the corrections to the QP band structure) may be separated into a dynamic and a
static contribution, and written as

��(�r, �r ′;ω) = �sex(�r, �r ′) +�coh(�r, �r ′) +�dyn(�r, �r ′;ω). (5)

�sex and �coh are the static screened exchange (SEX) and the Coulomb-hole (COH) terms,
respectively, and �dyn the energy-dependent contribution. Although the previous equation
is purely formal, it is the starting point of simplified GW -schemes, since one can work out
approximated expressions for each contribution separately. The most expensive step towards
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the evaluation of GW -corrections to E(0)
n�k is the calculation of the energy-dependent screened

interaction W(r, r ′;ω). Although many improvements have been proposed for an efficient
calculation of the dielectric response function from first principles [27, 28], this stage is still
very demanding as regards both computer time and memory when a large basis set is used
for the description of the electronic structure. In particular, this is the case for oxides in
a plane-wave pseudopotential approach. On the other hand, the improvement of DFT-LDA
band structures obtained by using schemes originally formulated on a phenomenological basis,
such as those based on the scissor operator or Slater’s α-potential [2], showed that the essential
physics can be described through the use of effective or state-dependent potentials. From a
more fundamental point of view, one can work out a model for the screening properties of the
system, and see to what extent the computed QP spectra account for the observed experimental
values. Possibly, the model should also be simple enough to be generalized to a large number
of different systems. Following previous studies [20, 23], we use a model dielectric function
to estimate both the static and the dynamical contributions to the self-energy (equation (5)),
since it is the key ingredient in efficient GW -approximations.

2.1. Static screening and local field effects

For the diagonal part of the screening function, we use an analytical model originally proposed
by Bechstedt and Del Sole [18]:

ε(q, ρ̄) = 1 +

[
1

ε∞ − 1
+
q2

q2
T F

+
3q4

4k2
F q

2
T F

]−1

(6)

where the Fermi vector kF and the Thomas–Fermi wave-vector qT F depend on the average
electron density ρ̄. This expression mimics the free-electron-gas behaviour at highq. Atq = 0,
equation (6) gives the value of the optical dielectric constant ε∞ of the oxide. Moreover we use
a local ansatz for the static Coulomb screened interaction, analogously to that of Hybertsen
and Louie [27]:

W(�r, �r ′) = 1

2
[Wh(�r − �r ′; ρ(�r)) +Wh(�r − �r ′; ρ(�r ′))] (7)

whereWh is the screened Coulomb interaction of a virtual homogeneous system characterized
by a finite optical dielectric constant [18, 29]. Quasiparticle energies determined from the
above ansatz result in good accordance with full GW -calculated ones [20,27]. This, together
with equation (6), permits us to obtain a simple analytical expression for the static part of
the Coulomb-hole self-energy �coh. The explicit formula has been given elsewhere [30]. For
the calculation of �sex in equation (5), the Fourier transform of W(�r, �r ′) is needed, namely
W̃ (�k+ �G, �k+ �G′). In order to reduce sharply the time needed to compute this term, we proceed
in two steps. Firstly, we retain only the diagonal terms in the screened Coulomb interaction.
Secondly, we account for local field effects (i.e. non-diagonal terms with �G �= �G′ in W̃ ) by
using suitable state-dependent densities to compute kF and qT F . Given a state n�k, we define
the effective electron density ρ̃n�k , which determines the typical screening lengths q−1

T F and k−1
F

relevant for the estimation of En,�k (equation (3)) as the expectation value of the ground-state
electronic density ρ(�r) for the actual state:

ρ̃n�k =
∫

d3�r ρ(�r)|ψn�k(�r)|2. (8)

Since the relevant screening lengths k−1
F and q−1

T F are increasing functions of ρ̃n�k , the latter is
intended to give an approximate description of the local fields in �sex through an enhanced
screening for the electronic states which contribute effectively to the total electron density.
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In the oxides considered here, the effective densities ρ̃n�k range from few tenths of the mean
valence electron density ρ̄ = Zval/V for conduction states up to 4–5 ρ̄ for deep valence states.
As a consequence, the lengths k−1

F and q−1
T F are shorter for the screening of valence band

states than for that of conduction band states. This difference is enhanced with respect to that
for more covalent semiconductors, such as Si and GaAs [20], in which the valence electron
distribution is more delocalized and less dissimilar to that of the conduction states than for
oxides such as MgO.

This approximate scheme for treating local field effects was analysed in detail and its
reliability was shown through a comparison with full GW -calculations, in the case of both
small- and wide-gap semiconductors [20,21]. In reference [21], it was also shown that the use
of a non-diagonal model dielectric function does not clearly improve band gaps while adding
additional computational costs.

2.2. Dynamical contributions

The diagonal matrix element of the dynamical part of the self-energy (the third operator on
the right-hand side in equation (5)) for the state ψn�k:

�
dyn

n�k (ω) = 〈ψn�k|�dyn(�r, �r ′;ω)|ψn�k〉 (9)

can be linearly expanded in energy around the DFT value E(0)
n�k , with the linear coefficient

βn�k = 〈ψn�k|
(
∂�

∂ω

)
E
(0)
n�k

|ψn�k〉. (10)

This approximation for the energy dependence of the self-energy operator turns out to be valid
over a wide energy range, as confirmed by the results of fullGW -calculations on bulk Si [10].
Solving the Dyson equation within the first-order perturbation theory with respect to�−Vxc,
and using equations (3) and (5), the QP shifts for the ψn�k state hence read

En�k − E
(0)
n�k =

�coh
n�k +�sex

n�k +�dyn

n�k (E
(0)
n�k )− 〈ψn�k|Vxc|ψn�k〉

1 + βn�k
(11)

where �coh
n�k and �sex

n�k are the expectation values of the static COH and SEX contributions to

the self-energy, respectively. From theGW -expression for �, replacingG byG(0), computed
at the DFT level [20]:

�
dyn

n�k (E
(0)
n�k ) =

∑
n′ �k′

∫
d3 �q
(2π)3

|B �k�k′
nn′ (�q)|2 4π

q2
(E

(0)
n�k − E

(0)
n′ �k′)

× P

∫ ∞

0

dω

ωπ

�(
ε−1(�q, ρ̃n�k, ω)

)
ω − sgn(E(0)

n′ �k′ − µ)(E
(0)
n�k − E

(0)
n′ �k′)

(12)

βn�k =
∑
n′ �k′

∫
d3 �q
(2π)3

|B �k�k′
nn′ (�q)|2 4π

q2
P

∫ ∞

0

dω

π

�(
ε−1(�q, ρ̃n�k, ω)

)
[
ω − sgn(E(0)

n′ �k′ − µ)(E
(0)
n�k − E

(0)
n′ �k′)

]2 (13)

where

B
�k �k′
nn′ (�q) =

∫
d3�r ψ∗

n�k(�r)ei�q·�rψn′ �k′(�r). (14)

The model ε−1 is diagonal in q-space and the local field effects are accounted for through
the use of the state averaged density ρ̃n�k (equation (8)). The ω-dependent dielectric function is
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obtained from the static one by means of the plasmon-pole approximation (PPA) [10]. The PPA
has been widely used to compute semiconductor and insulator quasiparticle band structures,
even in the energy range of semicore states [12–14]. In order to account for the differences
E
(0)
n�k − E

(0)
n′ �k′ in equations (12) and (13), replacing them with the state-independent form

E
(0)
n�k − E

(0)
n′ �k′ ≈ −q2/2

as in reference [20], and using the sum rule
∑

n′ �k′ |B �k�k′
nn′ (�q)|2 = 1, one obtains

�
dyn

n�k (E
(0)
n�k ) �

∫
d3 �q
(2π)3

P

∫ ∞

0

dω

ωπ

�(
ε−1(�q, ρ̃n�k, ω)

)
ω + q2/2

(15)

βn�k �
∫

d3 �q
(2π)3

4πe2

q2
P

∫ ∞

0

dω

π

�(
ε−1(�q, ρ̃n�k, ω)

)
(ω + q2/2)2

. (16)

Therefore, once the spectrum and eigenfunctions obtained in the framework of the DFT
are known, the calculation of �dyn

n�k (E
(0)
n�k ) and βn�k according to equations (15) and (16) needs

no additional external parameters apart from the model dielectric function, and this is a simple
task that can be carried out on a standard workstation.

We have made extensive checks to test the reliability of the approximations used to obtain
equations (15) and (16), in the case of silicon. Some transitions between high-symmetry points
of some valence and conduction band states in Si are compared in table 1 to those obtained
through fullGW -approximation. The energy of the transitions between high-symmetry points,
as well as the fundamental gap in Si, are in very close agreement with those obtained from full
GW -calculations and with experiments for both methods. As far as the QP eigenvalues in Si
are concerned, the top of the valence band %25′,v is shifted downwards with respect to the DFT
values of 0.28 eV. This can be compared with the upward shift of 0.07 eV, as found by Godby
et al [11].

Table 1. Computed vertical transitions and minimal valence–conduction band gaps for silicon
(in eV). The experimental values are quoted in reference [27].

Si Full GW a Full GW b This work Experiment

%1,v–%25′,v 12.04 12.09 12.5 ± 0.6
%25′,v–%15,c 3.35 3.30 3.33 3.4
%25′,v–%2′,c 4.08 4.27 4.25 4.2

L2′,v–%25′,v 9.79 9.98 9.3 ± 0.4
L1,v–%25′,v 7.18 7.27 6.7 ± 0.2
L3′,v–%25′,v 1.27 1.25 1.2 ± 0.2, 1.5

%25′,v–L1,c 2.27 2.30 2.22 2.4 ± 0.2, 2.1
%25′,v–L3,c 4.24 4.11 4.15 4.15 ± 0.1

L3′,v–L1,c 3.54 3.47 3.45
L3′,v–L3,c 5.51 5.41 5.50

X4,v–%25′,v 2.99 2.98 3.3 ± 0.2, 2.9
%25′,v–X1,c 1.44 1.54 1.3

Valence–conduction minimal gap 1.29 1.24 1.21 1.17

a Reference [27].
b Reference [11].
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3. Computational details

The density functional calculations are carried out within the LDA for exchange and correlation
[31]. The Kohn–Sham orbitals are expanded in a plane-wave basis set. Special care has been
taken in constructing the pseudopotentials for cations (Sr, Ti, Mg), in order to avoid the
occurrence of ghost states [32] and to ensure an optimal transferability over a wide energy
range. We find that the inclusion of semicore states, such as 4s and 4p states for Sr, and 3s
and 3p states for Ti, greatly improves the transferability of the pseudopotentials, and is at the
same time necessary to take into account the hybridization of cation semicore states with O 2s
states.

Angular components up to l = 2 are included. The scheme of Martins and Troullier
is used [33] to generate separable soft norm-conserving pseudopotentials, with core radii
(in Bohr) of: 2.00 (Sr, 4s), 1.50 (Sr, 4p), 1.90 (Sr, 4d); 1.30 (Ti, 3s), 1.40 (Ti, 3p), 1.80 (Ti,
3d); 1.38 (O, 2s), 1.60 (O, 2p), 1.38 (O, 3d); 2.00 (Mg, 3s, 3p, 3d). The cut-off energy needed
to obtain a convergence better than 0.1 eV of both total energy and Kohn–Sham eigenvalues
is found to be equal to 50 Ryd for MgO, 60 Ryd for SrO and 80 Ryd for SrTiO3.

The use of ten special �k-points [34] for charge integration in the irreducible wedge of the
Brillouin zone (IBZ) is sufficient to achieve a good accuracy for the computed total energy;
for instance, the total energy changes by less than 10 meV and the fundamental band gap by
less than 0.1 eV when using ten instead of six special points to sample the IBZ.

The main bottleneck in the ab initio GW -calculations is the calculation and the inversion
of the full dielectric matrix for the eigenfunctions and eigenvalues of the system. Typically, this
task takes approximatively 75% of the CPU time needed for the calculation of the self-energy
correction for a single state [2]. As a result of the use of a model screening, the computational
cost and memory requirement are strongly reduced, and are comparable to those of calculations
carried out within the DFT. EfficientGW -calculations can thus be carried out also on a standard
workstation†.

The evaluation of the GW -corrections to the LDA band structures, and especially of the
SEX contribution�sex to the self-energy, needs some care, due to the presence of an integrable
divergence. A reduction of the numerical effort by using a limited number of k-points in the IBZ
is possible through the method proposed by Gygi and Baldereschi [35]. In our calculations, the
regularization is performed, for all the �k-points for which �sex is calculated, by transforming
the integral over the BZ of the diverging contribution into an integral of a function F(�k)
(periodic over the BZ), that can be computed analytically, plus a discrete sum over special
�k-points of a smooth function. For the sake of conciseness, in the case of the bare exchange
term (the generalization to the case of the diagonal screened exchange in cubic systems is
straightforward), the transformation reads

)

∫
BZ

d3k′

(2π)3
|B �k�k′

nn′ (�g)|2
|�k′ − �k − �g|2 � )

∫
BZ

d3k′

(2π)3
F(�k′)|B �k�k′

nn′ (0)|2

+
∑

�k′
w�k′

[
|B �k�k′

nn′ (�g)|2
|�k′ − �k − �g|2 − θBZ(�k′ − �k − �g)|B �k�k′

nn′ (0)|2F(�k′ − �k)
]
. (17)

θBZ(�q) = 1 if �q ∈ BZ and zero otherwise, B �k�k′
nn′ (�g) has previously been defined

(equation (14)) andw�k is the weight associated with the special point �k in the IBZ. By following
this method, ten special �k-points in the IBZ are sufficient to get a converged �sex within few
tens of meV.

† We used both a Cray C90 computer and a Digital α-500 workstation, with 512 MB of memory.



3678 G Cappellini et al

Because of the presence of the static screened exchange term, each GW -correction to a
given E(0)

n�k′ scales as N�kNNPW, where N�k , N and NPW are the numbers of �k-points used in
the summation of the charge, of occupied electronic states and of the plane waves used in the
expansion of the Kohn–Sham orbitals, respectively.

4. Magnesium oxide

The ground-state properties obtained for the O5
h phase (rock-salt) of magnesium oxide are

summarized in table 2. They are computed by fitting the curve of the total energy versus the
lattice parameter to the equation of state proposed by Murnaghan. One can note that our results
compare well to other all-electron LDA calculations [15, 36] and show slight discrepancies
with respect to experimental data: the computed lattice parameter is underestimated by about
2% and the cohesive energy is about 15% too large. We attribute these errors mainly to the
use of the LDA.

Table 2. Structural properties of cubic MgO. A comparison is made with other LDA calculations,
in a pseudopotential approach [41] or using LMTO [15, 36].

MgO a (Å) B (Mbar) Ecoh (eV)

Experiment 4.211 1.55 [40] 10.33

Reference [41] 4.191 1.46
Reference [15] 4.16
Reference [36] 4.09 1.71 10.67

Present work 4.125 1.56 11.80

The band structures, both in the LDA and including quasiparticle corrections, are shown
in figure 1 along high-symmetry lines in the BZ. In the following, we refer to the energy levels
relative to the top of the valence band in the LDA calculation, which is arbitrarily set to zero.
The bands are calculated at the theoretical equilibrium lattice parameter ath = 4.125 Å. In
table 3 we detail the energy differences between electronic states at high-symmetry points in
the BZ, computed either at the theoretical equilibrium lattice parameter ath = 4.125 Å or at
the experimental one aexp = 4.211 Å. One can easily see that some of the direct transitions,
and in particular those at %, strongly depend upon the value of the lattice parameter. This is
true at the LDA level, while the GW -corrections are less sensitive to the actual value of a. In
ionic rock-salt compounds, the value of the fundamental gap at the % point is indeed driven
by the strong Madelung potential, which varies as the inverse of the lattice parameter.

In agreement with a previous full GW -calculation [15], the quasiparticle corrections
consist of a rigid shift of the conduction band (CB) with respect to the valence band (VB)—
that is, application of a scissor operator, which is modulated by smooth �k-dependent terms of
the order of 10% of the rigid shift itself. The total valence bandwidth, %15,v–%1,v , changes
from 17.3 eV in the LDA to 20.1 eV with quasiparticle corrections. Similarly, the L′ and X1

points move �2 eV downwards from the valence band maximum (VBM), as one can see from
figure 1. This improves the accordance with the experimental XPS spectra which show a main
peak at 18 eV and a shoulder at 21 eV below the VBM [37]. The fundamental band gap moves
from 5.21 eV to 8.88 eV.

In all these calculations, we assume the experimental value ε∞ = 2.95 [38] for the static
dielectric constant. Recently, through an ab initio calculation of the dielectric function within
the LDA, Shirley found ε∞ = 3.03, at the experimental lattice parameter [39]. In order to test
the sensitivity of our theoretical scheme to the choice of ε∞, which enters as a parameter in our
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Figure 1. Computed bands of cubic MgO at the theoretical lattice parameter. Solid lines: GW -
bands. Dashed lines: LDA bands. The top of the LDA valence bands is arbitrarily set to zero.

Table 3. Direct gaps of cubic MgO (in eV). Our results are given both in the LDA and with
quasiparticle corrections (LDA + GW ), either at the theoretical equilibrium lattice constant (†) or
at the experimental one (‡). The theoretical calculations of references [15, 39, 43] were all carried
out at the experimental lattice constant.

MgO Eg(%) Eg(X) Eg(L) Minimal gap

Experiment [42] 7.7 13.3 10.8 7.7 (%–%)

HF + polarization [43] 8.21 15.79 11.48 8.21 (%–%)
LDA [15] 5.2 10.5 8.9 5.2 (%–%)
LDA + GW [15] 7.7 13 11.4 7.7 (%–%)
LDA [39] 4.73 4.73 (%–%)
LDA + GW [39] 7.81 7.81 (%–%)

This work

LDA† 5.21 10.40 8.93 5.21 (%–%)
LDA‡ 4.61 10.26 8.46 4.61 (%–%)
LDA + GW† 8.88 14.43 12.99 8.88 (%–%)
LDA + GW‡ 8.20 14.22 12.46 8.20 (%–%)

model screening function defined in equation (6), we performed an additionalGW -calculation
by adopting ε∞ = 3.50. Consistently with a stronger screening, the direct transition energies
at high-symmetry points are lowered by �0.5 eV at most.

It is interesting to note that the main corrections to the Kohn–Sham eigenvalues of VB
states come from the static screened exchange term �sex (equation (8)), while the Coulomb-
hole contribution�coh dominates the quasiparticle corrections to the eigenvalues of the CB. For
instance, �sex

%1
� −16 eV and �coh

%1
� −10 eV at the bottom of the VB, while �sex

%1
� −5 eV

and �coh
%1

� −8 eV at the bottom of the CB. This is consistent with the more localized nature
of the VB states with respect to the CB states. The same remark applies to SrO and SrTiO3,



3680 G Cappellini et al

which are discussed in the following sections.
As far as the interpretation of the main optical transitions is concerned, we indicate in

table 3 the experimental values with their tentative assignment, according to Schömberger and
Aryasetiawan [15]. We agree with their interpretation, since ourGW -values, computed at the
experimental lattice constant, differ by �1 eV at most from theirs. Our calculations slightly
overestimate the experimental transition energies.

5. Strontium oxide

The ground-state properties computed for the O5
h phase of SrO are summarized in table 4.

The band structures, computed in the LDA and with QP corrections, along high-symmetry
directions are shown in figure 2.

Table 4. Structural properties of cubic SrO. A comparison is made with Hartree–Fock [48] and
LDA calculations [36, 49].

SrO a (Å) B (Mbar) Ecoh (eV)

Experiment 5.16 0.906 10.45

HF [48] 5.25 1.06
LDA [49] 5.1–5.18 0.88–0.82 10.9–10.5
LDA [36] 5.22 1.07 9.59

Present work 5.07 1.04 11.9
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Figure 2. Computed bands of cubic SrO, at the theoretical lattice parameter. Dashed lines: LDA
bands. Full lines: GW -bands. The zero is arbitrarily fixed at the top of the valence LDA band.

A deep band, originating mainly from Sr 4s states, is not shown in the figure. It is found at
around −30.5 eV in the LDA calculation, with a dispersion less than 1 eV. The QP corrections
shift this band to lower energies, about 33 eV below the valence band maximum (VBM).

The bands of lowest energy shown in figure 2 originate from Sr 4p and O 2s states. In the
LDA, the bandwidth is about 4.3 eV, while theGW -corrections push that band towards higher
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binding energies, and split it into two less dispersive structures, of which the lower originates
from O 2s states mainly, and the upper from Sr 4p states. The splitting between O 2s and Sr 4p
levels is essentially due to the larger �sex contribution for the former states, as a consequence
of their stronger localization.

As far as the deep VB levels are concerned, XPS experiments [37] found two broad peaks
at �−35 eV (A) and �−17.5 eV (B) below the top of the valence band. The authors assigned
the A structure to the band arising from Sr 4s states, and the B structure to those coming from
O 2s and Sr 4p states. The resolution, however, was too poor for them to resolve the two latter
contributions to peak B. The positions of the deep VB levels are badly accounted for in the
LDA, which would yield the A peak at −30.5 eV and a broader B structure at around −13 eV.
On the other hand, Hartree–Fock calculations including correlation [43] give a separation of
about 6.5 eV between the O 2s and the Sr 4p states, which is probably overestimated. A better
agreement with experimental data is obtained through the inclusion ofGW -corrections, which
shift the Sr 4s band to �−33 eV and give two contributions to the electronic density of states
at �−18 eV and �−14 eV with respect to the VBM, about 0.5 eV wide. The latter seem
consistent with the broad B structure seen in XPS [37]. A later XPS investigation [44] found
a splitting .AB between the A and the B structure equal to 17.9 eV, which was interpreted as
the difference in binding energy of the Sr 4s and 4p levels in SrO. Since it seems difficult to
disentangle the Sr 4p and the O 2s contribution to the B structure, we compare the minimum
and the maximum splittings .AB as obtained in our calculations. In the LDA, .AB ranges
from 14.5 eV to 17.5 eV, while that obtained by including the GW -corrections ranges from
16 eV to 19 eV and agrees better with the XPS data.

The upper part of the valence band is very similar in the LDA and GW -calculations. Its
width is 2.2 eV in the LDA and 2.1 eV afterGW -corrections. The dispersions of both QP and
LDA eigenvalues along high-symmetry directions are very similar, too.

The lower part of the conduction band drawn in the figures is shifted upward by GW -
corrections, opening the LDA gap by about 3 eV, with additional and small corrections
depending on the particular band and �k-point as one can see in table 5. In particular, the direct
gap at % (X) passes from Eg(%) = 4.29 eV (Eg(X) = 3.03 eV) in LDA to Eg(%) = 7.54 eV
(Eg(X) = 6.39 eV) after GW -corrections. It is important to note that the %15–%1 direct
gap is very sensitive to the precise value of the lattice parameter a0: while the above value
Eg(%) = 4.29 eV is calculated at the LDA equilibrium lattice parameter ath, at aexp = 5.16 Å

Table 5. The gap of cubic SrO (in eV), at the high-symmetry point of the Brillouin zone. The gaps
are calculated either at the theoretical lattice parameter (†) or at the experimental one (‡).

SrO Eg(%) Eg(X) Eg(L) Minimal gap

Experiment

Reference [45] 5.896 6.28 5.9 (%–%)
Reference [46] 6.08 5.79

LDA (reference [36]) 4.26 3.8 (%–X)
Xα (reference [47]) 5.10 4.03 7.3 3.9 (%–X)
HF + correction (reference [43]) 7.11 9.11 12.36 8.54 (%–%)

Present work

LDA† 4.29 3.03 7.79 3.00 (%–X)
LDA‡ 3.92 3.11 7.47 3.04 (%–X)
LDA + GW† 7.54 6.39 11.17 6.37 (%–X)
LDA + GW‡ 7.12 6.45 10.81 6.39 (%–X)



3682 G Cappellini et al

we find a smaller Eg(%) = 3.92 eV, i.e. a reduction of about 0.4 eV. The behaviour at the
X point is different, since the Eg(X) calculated at aexp is equal to 3.11 eV, about 0.1 eV bigger
than that computed at ath. Given the different natures of the electronic states at the various
symmetry points in the BZ, a non-trivial dependence of the eigenvalues upon the structural
parameters is generally expected†.

On the other hand, the QP energy differences obtained by our method are less dependent
on the precise value of the optical dielectric constant used in the model screening (equation (6)).
For instance, Eg(%) varies only by −3% when passing from ε∞ = 3.35 to ε∞ = 3.7, which
represents an 11% increase of the optical dielectric constant.

We are not aware of any angle-resolved photoemission or inverse photoemission
experiments on SrO, able to provide direct experimental information on the band dispersion
around the Fermi level. Thus, the comparison of our results to experimental data is mainly
based on the information issuing from reflectivity measurements. Rao and Kearney [45]
conclude, for direct gaps at % (X), Eg(%) = 5.9 eV (Eg(X) = 6.28 eV), and exciton binding
energies at high-symmetry points of the BZ around 0.2–0.3 eV. Conversely, more recent optical
measurements on well characterized single crystals of SrO [46] found Eg(X) = 5.79 eV,
lower than Eg(%) = 6.08 eV. On the basis of the onset of the optical absorption spectra,
the authors also deduce that SrO has an indirect minimum gap, while BaO shows a direct
gap at X. On the theoretical side, the nature of the fundamental gap of SrO is still debated:
while both LMTO/LDA [36] and APW Xα [47] calculations give a %15–X3 indirect gap that
is clearly underestimated (3.8 and 3.9 eV respectively), Pandey and co-workers [43] found
more realistic values, Eg(%) = 7.11 eV and Eg(X) = 9.11 eV, through a Hartree–Fock
calculation including correlation at the second order in perturbation theory. These results
confirm the general findings on other semiconducting and insulating materials, that DFT-LDA
underestimates the fundamental gap, while the reverse happens in Hartree–Fock calculations,
although the inclusion of correlations in the latter improves the agreement with experiments.
Our GW -corrected bands at the experimental lattice parameter yield gaps at X and % equal
to Eg(X) = 6.45 eV and Eg(%) = 7.12 eV respectively, presenting a better agreement with
experimental data.

6. Strontium titanate

The computed ground-state properties of the cubic phase of SrTiO3, such as the equilibrium
lattice parameter, the bulk modulus and the cohesive energy, are shown in table 6. A good
agreement with previous LDA calculations [50, 51] is found. We stress that in all these
calculations the self-consistent electron density includes the semicore states (Sr 4s, Sr 4p, Ti
3s and Ti 3p). With respect to experimental data, a slight underestimate (−1.3%) of the lattice
parameter is obtained, while the computed cohesive energy is �20% larger than that measured,
as is usual in the LDA. As far as theGW -calculation is concerned, we adopt the experimental
value ε∞ = 5.82 of the optical dielectric constant of the cubic phase of SrTiO3 [52]. Both LDA
andGW -bands (figure 3) are computed at the LDA theoretical equilibrium lattice parameter ath.

Firstly, we discuss the positions of the deep-lying states not shown in figure 3. A deep,
almost non-dispersive, energy band is found at �−54 eV below the top of the valence band
(VBM) in the LDA calculations, which originates from Ti 3s states. The inclusion of QP
corrections in our GW -scheme pushes it downward, to −58.9 eV below the VBM. This is in
very good agreement with XPS measurements [37], which show a peak at around −59 eV.

† In SrO, the bottom of the conduction band X3,c has mainly Sr 4d character, while at%1,c the Sr 5s character prevails.
In any case, a noticeable degree of second-neighbour hybridization is present.
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Table 6. Structural properties of cubic SrTiO3. References [50,51] both use the LDA with ultrasoft
pseudopotentials. The experimental values of a and Ecoh are quoted in reference [56] and B is
taken from reference [57].

SrTiO3 a (Å) B (Mbar) Ecoh (eV)

Experiment 3.903 1.83 31.7

Reference [50] 3.870 1.94
Reference [51] 3.864 1.99
This work 3.850 2.03 37.88
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Figure 3. The upper part of the valence bands and lower part of the conduction bands of cubic
SrTiO3, at the theoretical equilibrium lattice parameter. Dashed lines: LDA bands. Solid lines:
GW -bands.

Analogously, in the LDA calculation, the narrow bands originating mainly from Ti 3p states
are located at −30.5 eV below the VBM, very close to a band with dominant Sr 4s character,
at about −29.5 eV. GW -corrections push them to −33.7 eV and −32.7 eV, respectively. The
XPS spectra show an asymmetric peak 2 eV wide, centred at �−34.5 eV [37]. As found for
the Ti 3s band, the inclusion of quasiparticle effects greatly improves the agreement with the
experimental data.

The very broad structure in the XPS data [37] between −20 eV and −14 eV originating
from O 2s and Sr 4p states is fully consistent with the position of our GW -bands, while the
LDA bands are higher in energy by about 3 eV on average.

The valence band portion shown in figure 3 has a dominant O 2p character with non-
negligible contributions from Ti 3d states, mainly in its lower part. It is less sensitive to GW -
corrections, which almost rigidly shift the bands towards lower energies. As a consequence,
the LDA andGW -bandwidths along the. line (4.15 eV and 4.11 eV, respectively) are both in
very good agreement with the value of 4.2 eV measured in angle-resolved photoemission [6].
Similarly, the total R1,v–R12,v bandwidth (see also figure 3) turns out to be 4.8 eV in the LDA
and 4.9 eV with quasiparticle corrections.

A major difference between the LDA andGW -results regards the direct band gaps, which
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roughly differ by about 3 eV. The onset for optical absorption was measured at 3.2 eV by
Cardona [53] and at 3.34 eV by Blazey [54], and interpreted as a %15,v → %25′,c transition.
The strong absorption peaks at �4–5 eV were attributed to vertical transitions at X and M,
respectively. On the other hand, the fundamental gap derived from combined photoemission
and inverse photoemission spectra, which is free from excitonic effects, was estimated to
be (3.3 ± 0.5) eV [55]. With respect to these experimental values, the LDA Eg(%) is
underestimated by almost 1 eV, while the GW -value is overestimated by about 2 eV (see
table 7). In this respect, the inclusion of self-energy corrections at a perturbative level does
not improve the LDA. This issue is discussed in the next section, in relation to the validity of
our model screening for transition metal oxides such as SrTiO3.

Table 7. Computed Eg-values for direct transitions from the VB to the CB of cubic SrTiO3, in eV.
The minimal gap is also given.

SrTiO3 Eg(%) Eg(X) Eg(M) Eg(R) Minimal gap

LDA [50] 2.16 1.79 (R–%)
LDA [58] 3.77 4.1 5.2 2.88 (R–%)

This work

LDA 2.24 2.85 4.17 4.82 1.90 (R–%)
LDA + GW 5.42 6.10 7.29 8.15 5.07 (R–%)

7. Discussion

The agreement of our numerical results with the available experimental data is rather
inhomogeneous: while for MgO and SrO a reasonable agreement is found, for SrTiO3 the
QP bands around the Fermi level seem to be worse than the LDA ones. It is the aim of this
section to discuss our results with respect to two points: on the one hand, the quality of the
ground-state calculation from which the perturbativeGW -calculation starts; on the other hand,
the reliability of our model dielectric function used in the calculation of the QP spectra of the
oxides considered here.

We have found that the values of the direct gaps are very sensitive to the value of the lattice
parameter. A good description of the ground-state structural properties is thus a prerequisite
to obtaining QP spectra that can be compared to experimental data reliably. This is especially
the case for MgO and SrO. In table 8 the relative variations .g(�k) of the direct gaps, both in
the LDA and in the GW -approximation, are given as a function of the lattice parameter. One
can note that:

(i) The largest variations of the direct gaps .g(�k) are nearly always obtained at the LDA
level.

(ii) .g(�k) depends on the actual �k-point, consistently with the character of the wavefunction.
The largest.g(�k) are generally found for the strongest bonding–antibonding combinations
across the gap.

(iii) Increasing .g(%) is found for SrTiO3, SrO and MgO, in ascending order.

One should thus be careful when discussing the quality of the self-energy corrections
to the electronic structure, since it may be strongly dependent on variables, such as the
lattice parameter, which are external to the theory itself. Our data for MgO, obtained at
the experimental lattice constants aexp, compare well with other more sophisticated, ab initio
GW -results also using aexp [15,39], as far as the direct gaps are concerned (see table 3). Both
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Table 8. The dependence of the direct gaps Eg(�k) of MgO, SrO and SrTiO3 at high-symmetry
points �k of the Brillouin zone as a function of the relative variations of the lattice parameter
(ath −aexp)/aexp. The function.g is defined as {[Eg(ath)−Eg(aexp)]/Eg(aexp)}aexp/(ath − aexp).
The values are computed either by using the LDA, or by including quasiparticle corrections within
the GW -approximation.

MgO SrO SrTiO3

(ath − aexp)/aexp(%) −2.0 −1.7 −1.3

.LDA
g (%) −6.4 −5.4 −1.7

.GW
g (%) −4.1 −3.6

.LDA
g (X) −0.7 1.5 −2.2

.GW
g (X) −0.7 0.6

.LDA
g (L) −2.7 −2.5 −4.4

.GW
g (L) −2.1 −2.0

for MgO and for SrO, a fair accordance with experimental data is found when adopting aexp.
We thus conclude that, still at the level of the ground-state structural properties, one should
obtain a good agreement with experimental data (for example, by using generalized gradient
corrections to the LDA) before starting the calculation of the quasiparticle energies.

Care must also be taken when comparing the theoretical gaps and those derived from optical
measurements, because of the existence of excitonic effects in the latter, not accounted for in
the present theory. For MgO, these effects should be rather small, as suggested experimentally
by Roessler and Walker [42] and calculated by Benedict and co-workers [60]. For SrO and
SrTiO3 there is still a lack of the ab initio calculations of one- and two-particle excitations
required to address this issue fully.

Another important point is the quality of the quasiparticle corrections, in relation to the
model dielectric function ε(q, ρ̃) used in theGW -calculation. As is evidenced by equation (6),
the screening depends on the value of the optical dielectric constant ε∞ of the oxide. As in
the previous discussion regarding the lattice parameter, one can use either the experimental
optical dielectric constant available in the literature, or compute it in the framework of the self-
consistent theory adopted, such as the DFT. In a recent paper, Shirley [39] obtained for MgO a
theoretical optical dielectric constant, at the experimental lattice parameter, ε(th)∞ = 3.03 in the
LDA, to be compared with the measured ε∞ = 2.95 [38]. Extrapolating our results—obtained
with ε∞ = 2.95 and ε∞ = 3.50 (see section 4)—we can conclude that our quasiparticle
energies would vary by less than 0.1 eV when passing from ε∞ = 2.95 to ε(th)∞ = 3.03.
However, a more satisfactory theoretical framework would be to compute ε∞ from first
principles, in conjunction with the use of an approximation for the exchange–correlation
energy, capable of reproducing the experimental lattice constant. Although in the present
case the results would not be much affected, this would open the way to the calculation of
quasiparticle excitations of systems for which no experimental measurements of the optical
dielectric constant are available. On the other hand, the use of model dielectric functions might
open the possibility to treat complex systems consisting of many inequivalent atoms, such as
low-symmetry crystals, surfaces and heterostructures.

Considering the numerical results obtained, and the previous discussion, we note that the
model dielectric function works reasonably well for both MgO and SrO, which are compounds
with fundamental gaps much larger than those of the semiconductors ZnSe, GaN and SiC
previously studied with the same method [21, 23]. We thus conclude that the validity of the
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screening model (equation (6)) is neither a function of the gap value nor a function of the
ionocovalent character of the bonding in the crystal under study. On the other hand, it fails
when applied to SrTiO3, a transition metal oxide characterized by a moderate optical gap
(slightly larger than 3 eV according to references [6, 54]).

In order to clarify the reasons for such a failure, we computed the bare exchange
contribution to the QP gap at the % point, for both MgO (10.46 eV) and SrTiO3 (12.28 eV), in
first-order perturbation theory. This difference stems from the different character of the states
at the bottom of the conduction bands, which have a Ti 3d character in the case of SrTiO3,
and are much flatter than those of MgO, having a dominant Mg 3s character. This is fully
consistent with the stronger localization of the Ti 3d states, which could make our treatment
of local field effects (see equations (6) and (7)) rather inappropriate. In fact, the choice of
the effective density ρ̃n�k (equation (8)) takes into account the different localization of the
states only through their superposition with the electron density ρ(�r). Moreover, its definition
contains an ambiguity, since its precise value depends on the core–valence partitioning of ρ(�r).
It is interesting to consider the extreme limit in which ε(q, ρ̃) is no longer q-dependent and
is simply replaced by the optical dielectric constant ε∞. In this limit of screening, the only
contribution to the GW -correction to the DFT-LDA gap comes from the screened exchange
term, since the Coulomb hole gives a rigid shift equal for all the bands. Interestingly, this
correction provides gap values equal to 4.3 eV for MgO and 2.7 eV for SrTiO3, in much better
agreement with experiments in the latter case than when using ε(q, ρ̃n�k) given by equation (6).
This indicates the need for a better inclusion of local field effects in the model dielectric function
for transition metal oxides, such as SrTiO3. Another source of failure relating to SrTiO3 could
be also the use of a perturbative GW -scheme: a possible solution to this issue would be the
use of an efficient self-consistent GW -approach which has been shown to give good results
even for systems in which d orbitals play a fundamental role [61].

8. Conclusions

We have calculated the ground-state properties of the cubic oxides MgO, SrO and SrTiO3

within the DFT-LDA, and applied a perturbative GW -method, based on a dielectric model
which includes approximately local field and dynamical effects, to determine their quasiparticle
energies. We have tested the dependence of the calculated spectra on the parameters entering
the calculation, such as the optical dielectric constant ε∞ and the lattice parameter a. In
particular, we have shown that quasiparticle energies in alkaline-earth oxides are sensitive
functions of the lattice parameter, even at the LDA level. As a consequence, the use of either
the experimental or the theoretical values for a can influence the quality of the results whenever
ath differs from aexp.

Through a careful comparison with the available experimental data and previous ab initio
GW -calculations, we have showed that the simplified GW -method works reasonably well
for systems, such as MgO and SrO, in which the electronic states of the valence band and
the bottom of the conduction band mainly consist of s- and p-like states. Moreover, in the
three oxides, GW -corrections have been found to be crucial to account for the energies of
semicore electron states, such as O 2s, Ti 3s, Ti 3p, Sr 4s and Sr 4p, which agree well with
the peak positions recorded in photoemission spectra. When localized d-like states contribute
to bands around the Fermi level, our method produces an overestimation of the self-energy
corrections. This is the case for SrTiO3, for which it is not clear at this stage whether a higher-
order perturbative approach, in which the LDA wavefunctions are renormalized, is needed, or
whether this failure calls for a more refined treatment of local field effects.
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